
DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Experiment-3

Student Name: Anshuman Singh UID: 20BCS2665
Branch: CSE Section/Group: 902/A
Semester: 6th Date of Performance: 23-02-2023
Subject Name: Competitive Coding II Subject Code: 20CSP-351

 Aim: To demonstrate the concept of Heap model.

Problem1: Last Stone Weight

You are given an array of integers stones where stones[i] is the weight of the ith stone.
We are playing a game with the stones. On each turn, we choose the heaviest two stones and smash
them together. Suppose the heaviest two stones have weights x and y with x <= y. The result of this
smash is:
If x == y, both stones are destroyed, and
If x != y, the stone of weight x is destroyed, and the stone of weight y has new weight y - x.
At the end of the game, there is at most one stone left.
Return the weight of the last remaining stone. If there are no stones left, return 0.
Example 1:
Input: stones = [2,7,4,1,8,1]
Output: 1
Explanation:
We combine 7 and 8 to get 1 so the array converts to [2,4,1,1,1] then,
we combine 2 and 4 to get 2 so the array converts to [2,1,1,1] then,
we combine 2 and 1 to get 1 so the array converts to [1,1,1] then,
we combine 1 and 1 to get 0 so the array converts to [1] then that's the value of the last stone.
Example 2:
Input: stones = [1]
Output: 1

Constraints:
1 <= stones.length <= 30
1 <= stones[i] <= 1000

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Code:-
class Solution {
public int lastStoneWeight(int[] stones) {
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Comparator.reverseOrder());
for (int stone : stones) {
maxHeap.add(stone);
}
while (maxHeap.size() != 1) {
int y = maxHeap.remove();
int x = maxHeap.remove();
if (x == y) maxHeap.add(0);
if (x != y) maxHeap.add(y - x);
}
return maxHeap.peek();
}
}

Output:-

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Probem2: Cheapest Flights Within K Stops

There are n cities connected by some number of flights. You are given an
array flights where flights[i] = [fromi, toi, pricei] indicates that there is a flight from
city fromi to city toi with cost pricei.
You are also given three integers src, dst, and k, return the cheapest price from src to dst with
at most k stops. If there is no such route, return -1.
Example 1:

Input: n = 4, flights = [[0,1,100],[1,2,100],[2,0,100],[1,3,600],[2,3,200]], src = 0, dst = 3, k = 1
Output: 700
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 3 is marked in red and has cost 100 + 600
= 700.
Note that the path through cities [0,1,2,3] is cheaper but is invalid because it uses 2 stops.

Example 2:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1
Output: 200

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 2 is marked in red and has cost 100 + 100
= 200.

Example 3:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph is shown above.
The optimal path with no stops from city 0 to 2 is marked in red and has cost 500.

Constraints:

1 <= n <= 100
0 <= flights.length <= (n * (n - 1) / 2)
flights[i].length == 3
0 <= fromi, toi < n
fromi != toi
1 <= pricei <= 104
There will not be any multiple flights between two cities.
0 <= src, dst, k < n
src != dst

Code:-
import java.util.*;
class Solution {

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

public int findCheapestPrice(int n, int[][] flights, int src, int dst, int k) {
int prev[]=new int[n];
Arrays.fill(prev,Integer.MAX_VALUE);
prev[src]=0;
for(int i=0;i<=k;i++){
int cur[]=new int[n];
for(int j=0;j<n;j++) cur[j]=prev[j];
for(int e[]:flights){
int u=e[0],v=e[1],wt=e[2];
if(prev[u]!=Integer.MAX_VALUE&&prev[u]+wt<cur[v]){
cur[v]=prev[u]+wt;
}
}
for(int j=0;j<n;j++) prev[j]=cur[j];
}
return prev[dst]==Integer.MAX_VALUE?-1:prev[dst];
}
}
Output:-

